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.Ai
EXPLICIT NORMAL MODES

FOR A PERTURBED OCEAN MODEL
BY TRANSMUTATION

MARK D. DUSTON
ROBERT P. GILBERT

GHASI R. VERMA
DAVID H. WOOD

Graph 1

The theoretical foundations of normal mode theory and its use are already

well establised. In the future we wish to consider range dependent problems

in terms of partitioning, so that the range dependent effects will be corre-

cted at the boundaries of the partitions and the solutions allowed to propag-

ate further. In order to apply this approach it is necessary to find the

normal modes at each boundary. We are interested, therefore, in finding a

method that will allow us to calculate the normal modes in a faster, more

efficient manner. One of the methods that holds promise of attaining this

objective is that of transmutation theory. Transmutation theory is essen-

tially a generalization of the method of integral transformation.
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TD 7791

~THE IDEALIZED OCEAN

Z
0- Tr

r(rz + r PrQr,z) + pzz(r,z) + k2 p(r,z) =0,)

WITH p(r,O) = 0 AND pr(rh)

WE SOLVE USING SEPARATION OF VARIABLES,

p(r,z) = 0(z) 0(r).

Graph 2

We are dealing at this point with a fairly simplified model of the ocean

and make the following assumptions:
1) uniform depth,
2) ocean is an isotropic medium,
3) sound speed a constant
4) pressure p-0 at the surface, and

5) ocean and its bottom are eventually (at some depth h)

underlaid by a rigid surface.

Under these assumptions the excess pressure p satisfies the Helmholtz

Equation.

pr (r,z) + 1 p (r,z) + p (rz) + k 2p(r z)- 0,

with the boundary conditions

p(r,0) - 0 and pz(r,h) - 0.

The second boundary condition (the boundary condition at h) is that of a

rigid subbottom. We solve in a standard manner by using the method of separa-

tion of variables p(r,z) - O(z)e(r).

2



TD 7791

* THE IDEALIZED STURM-LIOUVILLE
~PROBLEM

THE IDEALIZED NORMAL MODES SATISFY

0 " (z) + k2 O(Z) 1 (Z),

0(0)= 0 AND 0'(h) = 0

WITH L2 NORMALIZATION THIS HAS SOLUTIONS

4Om(Z) = A sin (2m -1)7rz

m = 1, 2, 3,...

m - [(2m-1)7] 2

Graph 3

It is well known that for the idealized ocean with constant sound speed

the normal modes satisfy an idealized Sturm-Liouville problem given by

4"(z) + k2 O(z) - 10(z)

and boundary conditions

0(0) - 0 and 4'(h) - 0.

It is also well known that this problem has a complete set of eigenfunctions
given by

0re(z) h 2h m - 1, 2, .

and corresponding discrete eigenvalues given by

I - k 2 [ I2 m-, 2.....m 1 h

These eigenfunctions have been L2 normalized.

3
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.,ER I.

THE PERTURBED
STURM-LIOUVILLE PROBLEM

z
0 ,r

IN AN OCEAN WHERE THE SOUND SPEED IS A FUNCTION

OF DEPTH ONLY THE NORMAL MODES SATISFY

4"(z) + k2 n2(z)(z)-

WITH THE CONDITIONS

0(0) = 0 AND '(h) = 0.

Graph 4

We wish to solve a similar problem associated with amore general ocean
model. The condition that the sound speed be constant is replaced with the
assumption that the sound speed is a function of the depth only, the other
assumptions remain unchanged. We consider this model to be the perturbed
ocean model. The depth dependent equation gives a perturbed Sturm-Liouville
problem for the normal modes which satisfy
01"(z) + k 2n 2 (z)O(z) - AO(z)

with the boundary conditions expressed as

V)(0) - 0 and 0'(h) - 0.

4
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THE INDEX OF REFRACTION

n2(z) + 1+ s(z)

CONTAINS A PERTURBATION Es(z).

THE CASE E = 0 REPRESENTS AN IDEALIZED OCEAN
WITH CONSTANT SOUND SPEED.

Graph 5

The quantity n2 (z) is the index of refraction and we represent it as

n2(z) - 1 + fs(z)

where the quantity es(z) is considered the perturbation. We introduce the
parameter e which reflects the size of the perturbation from its average
value. We assume that the function s(z) is known for the case of interest.
When c-0 we have recovered the idealized ocean with constant sound speed.

5
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THE GENERAL PERTURBATION APPROACH

FIND THE EIGENFUNCTIONS ikn AND THE EIGENVALUES
Xn OF THE PERTURBED PROBLEM IN TERMS OF THE
EIGENFUNCTIONS On AND EIGENVALUES 4n OF THE
IDEALIZED PROBLEM AND THE PERTURBATION Es(z).

Graph 6

In a perturbation approach we find the eigenfunctions V'm and eigenvalues
Am of the perturbed (depth dependent) in terms of the eigenfunctions 0m and
eigenvalues Im of an idealized problem (which we know) and the perturbation
es(z) (which we also know). Specifically we look for the changes or correc-
tions which must be made to the idealized eigenfunctions and eigenvalues.

6
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~THE CLASSICAL APPROACH

EXPAND IN POWER SERIES IN

Xm = Im + CA4 + C Am +

AND

(1) (2)

1,tm(Z) = om(Z + E ( + -2 4'M(Z) +

BUT OBTAIN EACH TERM OF itm(Z) ONLY AS A
FOURIER SERIES

00/ ( ) =_ ( Im) p( )

Graph 7

The first approach we examine is the classical perturbation approach

found in Titchmarsh. The eigenvalues and eigenfunctions of the perturbed

problem are expended in power series of the parameter c.

The perturbed eigenvalue equals the idealized eigenvalue plus corrections,

Am m +  (i) + 62A(2) + ...

The perturbed eigenfunctions equals the idealized eigenfunctions plus correc-

tions,
(2)

0m(Z ) - 0m(Z) + com(1 )(z) + C2 m()(z) +

However, we find the corrections to the perturbed eigenfunctions only as a

Fourier series of the idealized eigenfunctions and we must find the Fourier

coefficients a in teims of the idealized eigenfunction, idealized eigenvalues

and the perturbation.

7
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THE CLASSICAL RESULTS

THE CORRECTIONS TO FIRST ORDER IN E ARE

() W hh z2(1) 2k2 j'0h s in (2m - 1)1% z--.
Xm =  h-" (Z) [in 2h jdz.

THE FOURIER COEFFICIENTS ARE

(1) 2k2  (2m - 1)7rz . (2n - 1)7rz
Umn =h- S(Z) sin 2h sin 2h dz,

AND
(1)

(mm = 0.

Graph 8

In a fairly straightforward manner the explicit equations for the corrections

may be derived. We exhibit the corrections to the first order in e. The first

order correction to the mth eigenvalue is given by the formula

(1) _ 2k 2 h  [ "2m2 hl)z] 2 dz

The first order correction to the eigenfunctions is given in terms of an in-

finite fourier series whose coefficients are given by

(1) 2k2 h (2m -l)z sin (2n -l)irz dz and a (1)

S h s(z) sin(2h 2h -0.mn h j mm
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THE TRANSMUTATION APPROACH

WE WANT TO TRANSMUTE SOLUTIONS OF AN IDEALIZED

STURM-LIOUVILLE PROBLEM

k"(z) + k2c (z) = X0(z)

INTO SOLUTIONS OF THE PERTURBED STURM.LIOUVILLE
PROBLEM

"(z) + k2 n2(Z) I'Z) = Xk(Z).

Graph 9

We say we wish to transmute the solutions of an idealized Sturm-Liouville
problem into the solutions of the perturbed Sturm-Liouville problem. A trans-
mutation refers to a generalization of the method of integral transformation.
It has the advantage that the choice of the idealized system (the system for
which the solutions are known) is at our discretion, we have only to find the
proper kernel function for the integral transform. As a rule of thumb one
chooses the idealized problem to be as similar as possible to the perturbed
problem. We choose for our idealized problem a Sturm-Liouville problem with

0"(z) + k2 O(z) - 4(z)

and wish to transmute the solutions into solutions of the perturbed Sturm-
Liouville problem with

,"(z) + k2n 2(z)V(z) - A(z).

9
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THE TRANSMUTATION OPERATION COMPUTES

O(z) = q(z) + K(z,s) p(s) ds

IN TERMS OF THE TRANSMUTATION KERNEL K(z,s)
WHICH MUST SATISFY

a2K a2K
aZ2 - 2 _+ k2 (n2(z) - 1) K = 0.

Graph 10

We use a transform of the type given by

Om(Z) - n(z) + J K(z,s)O(s) ds
h

where we must specify the kernel function K(z,s).

where the kernel function K(z,s) must be determined. We substitute the trans-

mutation into the separated ordinary differential equation for the variable

coefficient Helmholtz equation. This yields a partial differential equation

for the kernel function K(z,s)

a2K a-K k2es(z)K - 0
az2 as2

I0
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TO SATISFY THE BOUNDARY CONDITION

,'(h) = 0, z

WE ASK THAT THE
TRANSMUTATION PRESERVE "
THE BOUNDARY CONDITION
AT THE BOTTOM,

'(h) = 0, WHICH GIVES I

a I

as K(z,h) = 0, I,
i SAND h

2 -1- K(z,z) + k2 (n 2(z) - 1) = 0.

Graph 11

We now invoke our boundary conditions for the Sturm-Liouville problem
with variable coefficients. We ask that 0(0)-0 and 0'(h)-O. We impose the
same bottom boundary condition 0'(h)-O on the solutions of the Sturm-Liouville
problem with constant coefficients. Combining this with the given transmuta-
tion we obtain two additional constraints on the kernel function K(z,s)

as K(z,h) - 0 and 2 L K(z,z) + k 2es(z) - 0

These two conditions and the PDE for K(z,s) are sufficient to uniquely deter-
mine the kernel function

It would seem that we have made the problem more difficult, we had
reduced the problem to an ODE and now we must solve a PDE. Why not directly
solve the original Helmholtz equation? The answer is that we will not dire-
ctly solve the problem but instead will show a way in which the kernel func-
tion K(z,s) may be approximated as a power series in the parameter C.

11
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ONE METHOD OF SOLVING FOR THE KERNEL, K(z,s):

LET M(,7) - K(z,s) WHERE 2 = z + s - 2h, 2r7 = z - s.

THEN

2 M + k2 (n2( + 7 + h) -1) M -0.

EXPAND M(f,q) AS
.0

M(Ur) 7_ k2 p M( PI (&,), WHERE
p=

1

2M"'(,)= - (n2(+h)-1) da -0 (n20+h) - 1) do

AND

M'P + 1U,17)= - M' (a,3) (n2 (a +13 + h)- 1) doado.

Graph 12

One method of solving for the kernel function K(z,s)- M( ,7 ) is to trans-

form into characteristic coordinates given by

2 - z + s - 2h and 2n - z - s

We then get the PDE for M( ,n) which is

2 M 7 +k2 2  + 2 + + h)M - 0.

We next do a Born expansion of M in powers of the parameter k
2 . This yields a

sequence of integrals where the first coefficient of the expansion is given by

2 M- es(a+h) da - Yes(o+h) do3
0 0

and succesive coefficients in the expansion are given by

M (P + I ) f Mp(ao) s(a+p+h) da do

0 0

12
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INVERSION OF COORDINATES IN M(Q,q) GIVES

K(z,s) = EP K(P)(z,s)
p=1

z+s z-s+2h

2eK(1)(z,s) - 2 k2 (n2() - 1) da - fh 2 k2 (n2(c) - 1) da

AND

z-s z +s-2h

EK(P+')(z,s) = f -2 KP(,3)k2(n2(+f3+h) - 1)dccdO.

Graph 13

Inverting coordinates from (i,n) back into (z,s) we obtain an expansion
of the kernel function K(z,s). The first term of the the expansion is

(1) 2f(z+s)/2 2 (z-s+2h)/2

2EK (zs) - k h -s() h s(a)

and the succesive terms of the expansion are given by

KPl)(z,s) _k2  [(z+s'2h)/2

.(+l ) - -k zs)K (J\Q.,P) es(a+p+h) da do3
0 J0

We have now obtained expicit formulas for the power series expansion of the

kernel K(z,s) in the parameter e.

13
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o = AM0= 0(o) + fh K(0,S) (s) ds.

THEREFORE WE DEFINE

6(z) = 0(z) - 0(o).

NOTICE THAT

0 "(z) + k2 (0(z) + 0(0)) = X(0(z) + 0(0));

0(0) = 0 AND 0'(h) = 0.

ITS EXPANSION IS

O(Z) = 0(0)(z) + E0(1)(Z) + E20(2)(Z) +

Graph 14

We exhibit the value of the transmuted solution at the surface and see

that, in general the transmutation does not preserve the surface boundary con-

dition. Therefore we construct a new function

0(z)- O(z) -(0)

and see that this function satisfies the same boundary conditions as O(z). We

then expand this new function in power series in e.

14
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SUBSTITUTING THE EXPANSION OF 8(z) INTO
THE STURM-LIOUVILLE PROBLEM GIVES

ORDER co:
0o).. + (k2 - A ()) (O) = 0

ORDER c:

e()" + (k2 _ A o)) 0(1) - =,(18(0_ (A(o) - k2) p01(O)

ORDER C2:

e'2,. + (k2 + AM'o) 42) _ A1)-1) =(2,t(o) = (A(- - k2)V( 2)(0) + AM'I9 "(0).

Graph 15

Substituting O(z) into the idealized Sturm-Liouville problem with con-
stant coefficients and isolating the terms with corresponding powers of f we
obtain a sequence of ODE's each with the same boundary conditions as the
original problem.

For the 0 th order term it is well known that this homogeneous ODE has a
set of solutions (normalized sine functions) for 0(o) and corresponding
eigenvalues for ( ) .

We then take the inner products, 0(1) with the 0 th order equation and
0(0) with the first order equation subtracting we get the expression

f 9(O)(s) ds )- ( (A (0)-k2)0(1) o(O)(s) ds
0 0

which may be solved if we know the value of the constant 0(1)(0).

15
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THE TRANSMUTATION RESULTS

THE CORRECTIONS TO FIRST ORDER IN c ARE

= * + I(2n-1)7r -2 (1)(0)I

AND

in(Z) = 0) + E10(1 )( 0 ) (21 h - -- Ii-jh cos (2 n-1)Trz (0),,
nz n() nh2h 0 o h O 2h n zd

+ '( jh K( ()'(S) ds - jh I z K1)(z's) ON()Os ds O0°(z) dz)I

Graph 16

We can express the perturbed eigenvalues to the first order in e as

I- + f [(2n hl)12 0(1) (0)

n n L2h h n JI

and the perturbed eigenfunctions as

n(z) - 0n (Z)

n2h 2h

z(1) (0 2h (1 (0))i () d(0) h r z

+ ZK(1)(Z,s) n(s) ds - K [ K (1) (zs) (0)(s) ds ] 9(0)(z) dz}"

While the correction to the eigenfunction may look complicated it is the whole
correction. We have an explicit formula without having to resort to Fourier
series expansion.

16
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'THE TRANSMUTATION RESULTS
(Cont'd)

THE CORRECTIONS TO FIRST ORDER IN E ARE DEFINED
IN TERMS OF

(1 ) O) hO K(1)(Os)e(0 )(s) ds

AND

k2 / zs z-*+2h

K(1)(zs)= 2- 0 2 [n2() - 110 + h 2 [n2(-) - 11d)

GRAPH 17

The corrections foy the eigenvalues and eigenfunctions are expressed in

terms of 0(i)(0) and K( (z,s). The first constant is defined by the expres-

sion

1) (0) - [JK(1)(O,S)(O)(s) ds,n fo0

and the first order in epsilon term of the power series expansion of the

kernel is given by

"s - r ( ) i]ds)h [ (T) 1] d +

eK(1) (Zks) 2 K- 1] dl + (n 1n

We again have the perturbation type result where the corrections are explicit

functions of 8, the ynperturbed eigenfunction, 2, the unperturbed eigenvalue

and the expression [n (z) -1] which is the perturbation.

17
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CONSISTENCY OF THE

TWO APPROACHES

RECALL
kn) = E [ 4h2I)(o)j

= (jj~w . ~y (n2 1 - 1[n2 ) - 11 d) 6(0 (s))ds.

INTEGRATION BY PARTS GIVES
f k 4h r2

- 2(1) k 2 (nk) - 1) [sin 2nh)r 1d.

Graph 18

The results of the two methods look disimilar, however we can show that

the results are consistent. To show consistency of the first order correction

of the eigenvalues we start with

(1)n ~ ~~ 0[2~-) (1)(0)n

We substitute for 0(l)(0), including the power series expression for the

kernel function. Integration by parts yields

4(1)2k2  h [n2 ( ) l] sin hn  ] 2d,n h--h--2h

which is identical to Titchmarsh.

18
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WE CAN SHOW THAT THE FOURIER COEFFICIENTS OF
THE FIRST ORDER CORRECTION DEFINED BY

0n 0fh(n)(z ) 0(O)(z) dz,

ARE GIVEN BY

Enm W h2k2  f- - 1) . (2n -1)7rz . (2m-1)rz dz
h(X( ) - X(n1) "o --- 1)si 2M nm

AND

Eann -0.

Graph 19

The correction given by the transmutation is radically different from

the classical results. However if we express the transmutation correction in

Fourier series with respect to the functions 0 ( 0 ) , we see that the Fourier

coefficients

a - ( 1)(z) 9 0)(z) dz,

result.
After again making substitutions for 0(l)(0) and K(1 )(z,s), several in-

tegrations by parts and some changes of variable these coefficients may be

used to derive the classical Fourier coeffecients

- -2k2  h [n2(z) - 1] sin (2n -l)nz s (2m -l)ffz dz2h sin'(m2

h(,\(0) X(0 )) 0  
2h 2h

m n

and

90.

19
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